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Abstract. This paper presents a possible explanation for some of the empirical properties of asset returns
within a heterogeneous-agents framework. The model turns out, even if we assume the input fundamental
value follows an simple Gaussian distribution lacking both fat tails and volatility dependence, these features
can show up in the time series of asset returns. In this model, the profit comparison and switching between
heterogeneous play key roles, which build a connection between endogenous market and the emergence of
stylized facts.
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1 Introduction

In the last decade with the availability of large data sets
of high-frequency asset price series (including stock, for-
eign exchange and other asset price) and the application
of computer-intensive methods for analyzing their proper-
ties, the research in empirical finance has enjoyed substan-
tial development [1–5]. Pagan [6] and Cont [7] each pro-
vides an authoritative survey of these salient features that
are common characteristics of all financial markets and
classifies them as some “stylized facts” such as absence of
autocorrelations and long-range dependence, heavy tails
and conditional heavy tails, volatility clustering.

With the wealth of works in empirical research, to
build a model to explain the stylized facts of the asset
price volatility is still a competitive work. The goal is to
have the simplest and most parsimonious description of
the market and the most faithful representation of the
observed market characteristics. Widely presented models
are multi-agent models, which are based on interacting
agents using different strategies corresponding to abstract
or real market behavior, the examples include the “mi-
nority games” model [8–10],the percolation models [11,12]
and the spin models [13,14], and other microscopic mod-
els [15–18]. A typical one based on both economical and
physical approaches is Lux and Marchesi model (LM in
the following) [19,20], in which a relatively large number
of parameters enables one to incorporate several aspects
of real financial processes.

Following the route of LM, in this paper we present
a model to explain some “stylized facts” of asset price
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volatility. We propose a simpler mechanism to account
for the absence of autocorrelations and appearance of
long-range dependence, heavy tail and power law in the
extreme parts, and volatility clustering. In our model,
there are two types of market participants: fundamental-
ist and non-fundamentalist. This classification is similar
to fundamentalist-chartist approach [20–22]. The funda-
mentalist traders who buy when the asset price is below
the fundamental value and sell when it is above and noise
traders who use moving average technical trading rules
that can lead them to chase trends. The heterogeneous
agents switch from one type of strategy to the other ac-
cording to relative performance.

The first interesting contribution of our paper regards
the social interaction among traders. In the LM model,
there are two components that govern the transitions of
the traders: the herding component and the profit com-
parison. In fact,to obtain a deviation from normality many
other models take into account the herding behavior that
determines (at least in part) the fat tail property of the
distribution of returns [11–13,17,18]. In our model, the
herding component is absent, and only the profit feedback
plays a role. With the lack of the social interactions, the
model still produces a realistic time series of returns. An-
other remarkable result is the implementation of the mov-
ing average as the main strategy of the noise traders. It
allows a further simplification of the LM model since the
optimistic pessimistic classification for the noise traders
is no longer necessary. Furthermore, the moving average
approach in effect captures the elements of herding. Herd-
ing moves back and forth between bubble and non-bubble
dynamics and also between up and down bubbles within
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bubble dynamics. The moving average model essentially
captures these elements. In short, in our model the fat tails
behavior and the volatility clusters depend on two compo-
nents: the one is the transitions of the traders governed by
the profit comparison within effective memory, the other
is the moving average trading rule used by chartist trader
which tends to magnify the random shock to the market.

2 The model

In our model, there exist two types of traders in the asset
market. One is F-traders, who are fully rational and well
informed; the other is N-traders, who are either less well-
informed, irrational, or risk-loving [24]. Our model is based
on stylized representations of these two types of market
participants who use different strategies.

2.1 F-traders

F-traders may be referred as “fundamentalists” or “infor-
mation traders”. Let x be the current market price of a
unit of asset and v be its fundamental value, which can be
regarded as the present value of the rationally expected
stream of future net earnings of a unit of the asset. We
suppose that the F-traders know the fundamental value
v by means of so-called “fundamental analysis” based on
all available information about the asset. Obviously, the
F-traders attempt to incorporate the most recent informa-
tion into their estimates of fundamental value. As germane
events may occur almost randomly, the fundamental value
could be rather volatile.

In general, the current market price x diverges from the
fundamental value v. The F-traders think this means tem-
porary “false pricing” and believe x and v will converge
in the long run. Furthermore, the F-traders’ decision to
buy or sell asset depends on the divergence x and v. If the
spread is strongly positive, the opportunity for a capital
gain and desire for the asset is great; while if it is strongly
negative the risk of a capital loss and rejection of the asset
is great. Therefore the F-traders’ trading strategy is given
by a simple excess demand function:

qF = cF (vt − xt)3 (1)

and
vt = vt−1 + kεt (2)

where the nonnegative parameter cF measures the F-
traders’ excess demand response to a price gap. The cubic
formulation in function (1) is selected as a simple expres-
sion for the fact that greater spread induces more desire
for trade [25]. Furthermore, This cubic formulation can
block the market price to go far away from the fundamen-
tal value. εt is assumed to be standard Gaussian white
noise, which implies that v is a random walk.

2.2 N-traders

N-traders may be referred as “Non-fundamentalists” or
“Noise traders”. Here N-traders mainly correspond to
chartists, who use relatively simple and low cost buy-
sell rules, such as so-called “technical analysis”. One of
the most widely used technical rules is the moving aver-
age rule [26]. According to such a rule, buy and sell sig-
nals are generated by two moving averages of the level of
the index: a long-period average and a short-period aver-
age. When the short-period moving average penetrates the
long-period moving average, the N-traders think a trend
to be initiated and capital gain or loss to be expected.
This means the N-traders chase price up and down. In-
deed, although they are generally deemed as irrational or
poorly informed, DeLong et al. [27] demonstrated that
noise traders can sometimes do better than all other mar-
ket participants, especially when their behavior is driving
the market outcomes.

Here we adopt one of the simplest rules: the short-
period moving average is just the current market price
and the long-period one is just an exponentially weighted
moving average, which is also an adaptive expectation of
the market price. Let x denote the market price and y de-
note the long-period moving average, the N-traders’ trade
strategy can also be given as a simplified expression by an
excess demand function:

qN = cN (xt − yt) (3)

and
yt = αxt−1 + (1 − α)yt−1 (4)

where the nonnegative parameter cN measuring the N-
traders’ excess demand response to a price change, and
the parameter α dominates the weight distribution for the
long-period average.

2.3 Market dynamics

Suppose that the total F-traders and N-traders equal one,
and the F-traders’ share is w, then the aggregate excess
demand of the whole market is

qt = wtq
F + (1 − wt)qN . (5)

We suppose that there exists a market-maker who me-
diates the trading in the market. The market-maker helps
to meet the excess demand and adjusts the next period
market price depending on the excess demand. Generally,
we can assume that the change in market price is deter-
mined by a continuous, monotonically increasing function
of the aggregate excess demand. We model the dynamic
adjustment of market price by the following difference
equation:

xt − xt−1 = bqt = bcF wt(vt − xt)3 + bcN (1− wt)(xt − yt).
(6)

with the nonnegative parameter b measuring price adjust-
ment flexibility.
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As the market price changes, the share of the two types
of investors evolves. We assume that the type changes on
the basis of the past relative performance of the two trade
strategies. Let dz be the past relative return of the two
trade strategies, we suppose that transition probability of
a formerly N-trader switch to the F-trader group be π and
vice versa be 1 − π, where

π =
1

1 + e−λdz
(7)

with λ as a nonnegative parameter. Therefore the share of
the two types of investors evolves according to following
pattern:

wt+1 =
{

wt + δ with π
wt − δ with 1 − π

with the nonnegative parameter δ < 1 measuring type
switch sensitivity. To avoid unreal values of the share, we
let wt+1 = 1 if wt+1 > 1 and wt+1 = 0 if wt+1 < 0.

To define the past relative return of the two trade
strategies, we define zF and zN as the so-called “effective
memory of capital return” of the F-traders and N-traders
respectively

zF
t = h(xt − xt−1)qF

t−1 + (1 − h)zF
t−1 (8)

zN
t = h(xt − xt−1)qN

t−1 + (1 − h)zN
t−1 (9)

with the nonnegative parameter h < 1 measuring the
time horizon of the past performance evaluation. From
the above recurrence formula we can see that “effective
memory of capital return” is not real capital return, it
just expresses the weighted average of past observations
of capital return, and the exponent diminishing reflects
memory law. So the past relative return is also the “effec-
tive memory” sense of capital return, which is defined as
dz = zF

t − zN
t .

Here we assume transition between fundamentalists
and chartists depends on comparison of “effective mem-
ory of capital return”. This is similar to the LM model
and other multi-agent models [8–10] but different from the
other fundamentalists-chartists models [21–23], in which
the share of different type of traders only depends on de-
viation of the market price and the fundamental value.
Considering the “noise trader risk” [27], we think the re-
turn comparison assumption is more reasonable than the
value deviation assumption.

3 Numerical simulation of the price dynamics

The above section has presented a basic framework of the
asset market model, and it is easy to examine its dynami-
cal behavior by numerical simulation. This section we will
give some simulation results and compare them with the
“stylized facts”.

Fig. 1. The time series of asset prices Parameters: b = 1,
cF = 2, cN = 1, a = 0.02, g = 0.01, h = 0.01, k = 0.001,
λ = 1, v = 100.

Table 1. Augmented Dickey-Fuller Unit Root Test on Asset
Price: The ADF Test Statistic is −2.471.

1% critical value −3.434

5% critical value −2.862

10% critical value −2.567

3.1 Asset price

A simulated time series of asset price is presented by Fig-
ure 1. To explore dynamic property of asset prices, we do
a Dickey-Fuller unit root test on the series to check if the
price follows a unit root process. Table 1 gives results of
the test and shows the test fails to reject the null hypoth-
esis of a unit root in the asset price series at any of the
reported significance levels. This means one is unable to
reject the hypothesis that the asset prices follow a random
walk or martingale process.

3.2 Asset return

We define the rate of asset return as rt = (xt−xt−1)/xt−1.
Figure 2 is trajectory of rt corresponding to the realization
of asset price showed in Figure 1. Figure 3 is the dynamics
of share of the F-traders. Here we focus on the following
characteristics of the trajectory.

Firstly, the phenomenon of volatility clustering and on-
off intermittency shows up. The main feature of volatility
bursts appears to be ubiquitous in our model and does not
hinge on fine-tuning of the model parameters.

Secondly, from Figure 4 we can see that linear auto-
correlation of asset return are insignificant but the auto-
correlation function of absolute returns decays slowly as
a function of the time lag. This means absence of short-
range autocorrelations and existence of long-range depen-
dence.

Thirdly, we turn to fat tail phenomenon. Figure 5 gives
the distribution of the normalized returns (subtracting the
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Fig. 2. The time series of returns.

Fig. 3. The time series of F-traders’ share.

mean and dividing for the standard deviation), the kur-
tosis statistics and Jarque Bera test indicate that there
exists fat tail. The right inset of Figure 5 also gives the
right 5% tail distribution of the returns, it can be looked
upon as a nearly Pareto distribution. The tail index α in
its distribution F (x) = 1 − αx−α can be estimated by
Hill’s method, and the Hill estimate is about 2.60. This
result is close to the usual empirical finding of tail indices
somewhere between 2 and 4.

Finally, we can see the on-off intermittency phenom-
ena are strongly related with the population structure
of the heterogeneous traders. This implies that it is the
noise traders who enlarge the random shock and cause the
volatility clusters. When the F-traders dominate the mar-
ket, we can expect that the return keeps nearly Gaussian
distribution.

3.3 Sensitivity analysis

As an instance, above numerical simulation is limited to
one set of parameters. To evaluate the robustness of the

Fig. 4. The autocorrelations of raw and absolute returns. The
upper dash line is for raw returns and the below solid line is
for absolute returns.

Fig. 5. The distribution of normalized returns. Where original
returns’ mean is −9.19E−7, std.dev is 1.30E−3, Kurtosis is
11.8, Jarque Bera is 3.26E5. The Hill estimate for the 5% tail
returns is about 2.60.

model, we have done more Monte Carlo simulations with
different parameter sets. we find above characteristics of
return series can exist at a wide range of parameters. Ta-
ble 2 gives fat tail property of the return data, and the
results are obtained from 5 different parameter sets and
each set includes 100 samples. As computed with empiri-
cal data at daily frequency, the results (including kurtosis
and tail index estimates) look very realistic.

4 Conclusion

We have studied the behavior of a model of asset mar-
ket dynamics with two types of traders, one are funda-
mentalists who trade on the inferred market fundamental
value, another are non-fundamentalists or noise traders
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Table 2. Fat tail property of the return data: kurtosis and
tail index estimates (median from 100 samples and range of
estimates in the parentheses).

set kurtosis 2.5% tail 5% tail 10% tail

0 13.5 2.85 2.46 2.03

(8.1–40.1) (2.39–3.63) (1.99–2.83) (1.74–2.31)

1 9.8 3.11 2.68 2.15

(5.9–331.0) (2.37–3.75) (2.16–3.15) (1.74–2.49)

2 58.3 2.87 2.52 2.03

(8.2–170.6) (2.33–3.55) (2.14–3.08) (1.66–2.29)

3 13.6 2.90 2.51 2.02

(8.1–42.8) (2.32–3.61) (2.09–3.08) (1.71–2.34)

4 11.3 2.98 2.57 2.15

(7.6–27.8) (2.48–3.58) (2.15–3.03) (1.69–2.46)

Note: Parameter sets are given as: Set 0: b = 1, a = 0.02,
g = 0.01, h = 0.01; Set 1: b = 0.8, a = 0.02, g = 0.01, h = 0.01;
Set 2: b = 1, a = 0.02, g = 0.01, h = 0.02; Set 3: b = 1,
a = 0.03, g = 0.01, h = 0.01; Set 4: b = 1, a = 0.02, g = 0.005,
h = 0.01.

who trade on the chase for guessed trend. The heteroge-
neous agents switch from one type to the other according
to past relative performance which is based on their excess
demand and the market price’s movement. The asset mar-
ket prices are determined by the aggregate excess demand
of all traders. On this basic model, we investigate the re-
lationship between random changes in fundamental value
(as an “input” to the model system) and market price
changes as outputs of the model system. The simulations
turn out, even if we assume that the news arrival process
follows a simple Gaussian distribution lacking both fat
tails and volatility dependence, these features still show
up in the time series of asset returns. These results sug-
gest that these statistical properties appear as “emergent
phenomena” from the market process itself and do not
stem from movement of fundamental value. In fact, the
profit feedback and switching between F-traders and N-
traders play key roles, which build a connection between
endogenous market and the emergence of stylized facts.
This is different from the other approaches [11–13,17–20].
Our result is very important to understand the efficient
market hypothesis, which implies that random arrivals of
new information lead to random walk of asset price. But
our work shows even if random information can result in
a random fundamental value, with the hands of the non-
fundamentalists, the asset market price does not necessar-
ily keep a random walk. This may support the argument
that asset market is always not efficient but marginally
efficient [28].
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